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Abstract—In this paper, a new numerical method is presented
in order illustrate how the Method of Lines technique can be used
to obtain the power density distribution in a dielectric material by
solving dkectly for the electric field in three-dimensional space.
A detailed analysis of the treatment of the boundary conditions
at the interfaces that exist between air and the material, as well
as at absorbing boundary and input planes, are also given in
this paper. The method is tested and verified on some simple
wavegnide examples for which analytic solutions are available.
The technique is subsequently applied to the more complicated
cavity problem and the solutions for the power density distri-
bution are compared directly with those obtained in previous
research using the finite-difference time-domain (FDTD) method.
The results of all tests conducted in this research indicate that the
Method of Lines technique is a robust numerical tool which can
be used to readily handle the hyperbolic nature of the Maxwell
equations. Finally, in order to demonstrate the versatility of
the developed model, the power density distribution generated
inside a dielectric material loaded in a cavity that has multiple
input waveguides is presented. The chosen examples exhibit the
complicated electromagnetic phenomena which arise inside the
cavity and provides some idea of the effect of multiple waveguide
input on the power density distribution.

I. INTRODUCTION

M ICROWAVE heating has been used widely in a number

of industrial heating and drying processes [1]–[4]. Two

of the major problems associated with microwave heating are
the phenomena of arc-over and the spatial nonuniformity of
the microwave field strength, which causes localized hot or
cold spots to arise at sometimes random locations within the
applicators [5], [6]. In order to gain insight into the phenomena
that occur inside the microwave cavity, a detailed knowledge
of the electric and magnetic fields, together with a prediction
of the power distribution in the dielectric material is necessary.
In previous research the finite-difference time-domain (FDTD)
method [3], [4], [7] has been shown to be an applicable nu-

merical solution technique for solving the Maxwell’s equations
in the microwave heating applicator. Since this technique has

been validated earlier by the authors, the FDTD solutions will
be used to benchmark the performance of the new numerical
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scheme proposed in this paper when an analytic solution is

not available.

The Method of Lines (MoL) is a well-known technique
for solving parabolic type partial differential equations 1[8].

Essentially, the MoL technique proceeds by leaving the deriva-
tives along one chosen axis untouched (usually in time),

while all other partial derivatives (usually in space) are dis-

cretised using well-known strategies that include the finite

difference, finite element, or finite volume techniques. The
system is thereby reduced from its partial differential form
to a system of ordinary differential equations that can be

solved numerically by standard procedures such as Runge-
Kutta or Predictor-Corrector schemes, or by more sophisticated

software packages [9]. Recently, the MoL [10], [11] has been

used to solve Maxwell’s equations dkectly for the magn(stic
field (MAXMOL-H). It should be noted, however, that in order

to deduce the power density distribution in the cavity, the

magnetic field has to be curled to provide the electric fkid
and this can lead to a substantial computational overhead,
since numerical derivatives must be constructed. Nevertheless,

the scheme highlighted that the MoL has been successfully
employed to solve the hyperbolic Maxwell equations.

In this paper, a new numerical treatment is presented for

solving Maxwell’s equations whereby the MoL technique is

employed to resolve the electric field directly (MAXMOL-
E). A different strategy to that proposed in [10] and [11] is

utilized, and numerical models that solve Maxwell’s equations

for either the magnetic field system or the electric field system
have been implemented to gauge their performances. A de-

tailed synopsis of MAXMOL-E will be given here. The results
of numerous numerical experiments has indicated that both
schemes provide accurate results, however, using MAXMOL-
E appears to be more convenient and computationally efficient
in comparison with MAXMOL-H, since the power density

distribution can be obtained directly from the electric field

distribution. In fact, when the convergence criterion of tlhese
numerical schemes is based on the analysis of the power
distribution, MAXMOL-E is always more computationally

efficient in comparison with MAXMOL-H. There are also
other convergence criteria, however, that may be used to
terminate the iteration of these numerical schemes. FoI” ex-
ample, it is possible to consider the maximum and minhnum
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changes in the relevant
a convergence indicator.

fields through a given period as
Nevertheless, because the primary

concern of microwave heating problems concerns achieving a

sinusoidal steady state power distribution, it has been decided
to use a convergence indicator based on that distribution for
all the tests undertaken in this research.

The main focus of this research concerns the application

of the MoL for solving the three-dimensional (3-D) time-
dependent Maxwell’s Equations for the electric field. The

solutions obtained from the model are verified against some
analytical solutions for a rectangular waveguide loaded with
a dielectric material. The model is subsequently applied to

the more complicated cavity problem and the solutions for
the power density distribution are compared directly with
those obtained in previous research using the FDTD method.
Finally, in order to demonstrate the versatility of the developed
model and to test further the performance of the method
under extremely harsh numerical conditions, the power density
distribution generated inside a dielectric material loaded in a
multimode cavity that is fed by multiple input waveguides
each operating at the same frequency of 2450 MHz is studied.
The chosen examples exhibit the complicated electromagnetic
phenomena that arise inside the cavity and provides some idea
of the effect of multiple waveguide input on the power density
distribution

The paper is organized as follows: In Section II, the basic
equations of the method of lines MAXMOL-E are described.
In Section III, the boundary conditions and their numerical
treatment are presented. In Section IV, the dissipated power is
calculated. The results are discussed in Section V, and finally,
the conclusion is given.

II. BASIC EQUATIONS

Starting from Maxwell’s Equations, the derivation is similar

to that found in [3] and [4], however here we eliminate

the magnetic field H and obtain a hyperbolic system of
partial differential equations for the electric field E given in
nondimensional form as follows:

, a2E
.

=–vxvx E–sE–o*~‘~ (1)

and in the cartesian coordinate system (z, y, z) as

* aEy
‘g i%

,&Ez-( 132Ez iYEz 132EZ @Ey
E &2 = ~+~–—

-)
828X – a.zay –

SE.

S1 perfect conducting wall

total field region\ S2 interface\

Fig. 1. Boundary conditions.

where

E = E/EO

; = t/T”

~ = (x, y,2) = (x/L*, Y/L*, z/L*)

L“ = COT*.

s is the nonlinear effective factor of the dielctric material, cr*
is an effective conductivity of the dielectric material, e’ is the
real relative permittivity, e“ is the effective loss factor, w the
angular frequency, 130is the electric field intensity scale (V/m),
T* is the time scale (s), L* is the length scale (m), and Co is
the speed of light. We assume that the material properties are
piece-wise continuous in space having discontinuities only at

air–material interfaces. These properties may be functions of
temperature. It is also assumed that the material is not magnetic
so that (~ = ~o).

Equation (1) can be written as the following pair of first-
order equations in time:

A

g =@ (3)

a@

ai
—=$(-vx vxz-sfi-o*@). (4)

By discretising the spatial derivatives in (2) on a 3-D

mesh using second-order central difference approximations,
for example

&E.
— = *(%-l,W - ‘%(W)+ ‘%,j+l,k)) (5)@2

a’2Ey _ 1
—(%(i-l,j-l,k) + %z+l,j+l>k)

axay – 46x6y

– %(i-l,j+l,k)– ~y(i+l,j–l,k)) (6)

a system of first-order ordinary differential equations is ob-
tained

dk~,j,k
— ‘@~,j,k

d~
(7)

d@i j>k
- = !zi,j,J(@, E, ;)

d;
(8)(2)
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Fig. 2. Lossy slab in a rectangular waveguide.
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Fig. 3. Approximation of absorbing boundary condition for Test 1 (a) The
Taylor Series approximation (.. ) against analytical solution (_) (b) The
Method of characteristics approximation (. . ) against analytical solution

(–).

where @i,j,~ and ~i,j,~ represent the values of @ and ~ at
the point (i, j, k), and !??~,j,krepresents the finite difference

expression of the right-hand side of (4) at the point (i, j, k),

where 6X and 6y denote the space increments.

The study of stability for the MoL technique, as applied to

Maxwell’s equations, cart be analyzed by the von Neumann
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Fig. 4. Comparison of the power density distribution for the Analytical,
FD–TD, MAXMOL-H, and MAXMOL-E methods for Test 2.

method, the results in [11] are given as

()6;< min 2$

[16; [1
(&’)1/2

max —
(S’)w

<6 L<min — (10)
(7*

where

(a2=(+J2+(#2+(w

(9)

III. BOUNDARY CONDITIONS AND NUMERICAL TREATMENT

To obtain a well posed set of the Maxwell’s equations
that can be solved numerically, boundary conditions have
to defined. From Fig. 1, the boundary of the problem under
consideration can be thought to consists of four different
surfaces S1, Sz, S3 and SA, which correspond to a perfectly
conducting surface, the interface between air and a dielectric
material, the power input plane, and the absorbing boundary

condition, respectively.
S1 at a perfect electrically conducting surface requires the

following two constraints [12].

1) The tangential components of the E field are zero.
2) The derivatives of the normal component of the E field

in the normal direction are zero.

S? at an interface between air and the dielectric material
requires the following two boundary conditions to be satisfied
[12]:

71X( Ez-Ei)=O (11)

~ . (E@2 – ~1~1) = O. (12)

From (11 ) and (12), the tangential components of the E
field are continuous across a dielectric interface, the normal
component of the E field is discontinuous across a dielectric
interface, and its first- and second-order derivatives may also
be discontinuous across that interface. Consequently, it is
not possible to use approximations like (5) and (6) al the
interface between air and the dielectric material. A simple and
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Fig. 5. Comparison of the power density distribution of the analytical and
MAXMOL-E methods for Test 3.

accurate method, which automatically takes full account of the
discontinuities in the normal electric field components across
any arbitrary distribution of internal dielectric interfaces, is
presented by Stern [13] for the determination of the polarized
solutions of the Helmholtz wave equation. Using this tech-
nique, Fu and Metaxas [10], [11] obtained an approximation
for V2H across a dielectric interface. Here, using the same
technique, we obtain for the components E normal across an
interface, in the y direction

IYEV
— = -&l%l>k)~y2 – (D2 + ~3)fi,(2,j)k)

+ ~43y(i,j+l,k)) (13)

where

D1 = 2&(2,j_l,k) /(&~2,j,k) + E~i,j-l,k))

~2 = 2&f2,j,k)/(Ei2,j,k) + E{i,j-l,k))

~3 = ‘2&~i,j,k)/(&ii,j,k) + &+l,k))

D4 = ZC~i,j+l,k) /(~~i,j,k) + ~{i,j+l,k))

Fig. 6. Rectangular cavity excited by a single waveguide.

for the tangential components of E across an interface in the
x direction

&Ey
%E,(i-l,j,k)

6!z2 = 6X2
– (T1 + ~2)~,(i,j,k)

+ ~2&(i+l,j,k)) (14)

where

T1 = ?13(2,j,k)/(P(i, j,k) + D(i-l,ik))

T2 = 2/?(~,j,~)/(9(i,j,~) + ~(i+l>~>~))

and [14]

Further details can be found in the Appendix.

S3 at an input plane requires that the input plane divides
the system into two separate regions, the total field region

and the scattered field region [7], [3]. On the input plane
the incident wave must be defined, and the input wave only
propagates in the positive direction. This implies that we have
to make a correction to the derivatives with respect to the wave
propagating direction, for example

A

~2~Y(i,wJ =

* [fiY(i,ik.n-l) – Zfiv(i,ik,.)~z2
A

+ (fiy(i,j, k.m+l) – Ey–in(i,j,ktn+l) )] (15)

a2fi?/(2,j,k,n+l) _
~z2 - ~[(fiy(i,j,kin) + &n(i,j,kiJ)

A

– Zfiy(z,j,ktn+l) + %(i,j,k.n+2)l. (16)

For a TEIO mode the incident wave can defined as follows:

fiy-i~ = Eo sin = COS Wt (17)
a

where E. is the amplitude of the input wave, a is the width of
the waveguide, and w is the angular frequency of the incident
wave.

S4 at an absorbing plane requires that in the waveguide
region, behind the waveguide input plane, there is only a
reflected wave. The fields in the terminal plane cannot be
determined by the MoL scheme. We have to set an absorbing
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Fig. 7. The convergence of iteration for MAXMOL-E Test 4.

boundary condition to enable the mesh to be truncated by
means of an artificial boundary which simulates the unbounded

surroundings. The absorbing boundary is given as [7], [15]

(:-+%)E,’Z=ZO=”(18)

The following two possibilities for discretizing this bound-
ary condition and utilizing it within the system are considered:
1) By constructing a Taylor series, which is a second-order

accurate approximation

jjn+l

= J%(i)j,o)
[

L“(S.Z 3 3——
y(i,j, -1) @* f%>o) + f%)l)

—

2) By using the
line is given as

where

!@ 18Y(t,1>2)“ (19)

method of characteristics: from (18), the

by setting

and using liner interprolation, we obtain

so that (18) gives

En+l = q’(i,j,_l) – A[fi;(i,j,_l)– q!(,,j,o)]g(i,j,–1)

(20)

(21)

(22)

(23)

(24)
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IV. CALCULATION OF THE DISSIPATED POWER

In the MAXMOL-E scheme, once a steady-state solution is
achieved, the average dissipated power has to be taken into
account by taking the average over a period of time, i.e.,

iv

‘;av(i,j,k) = +“d~,j,~)~ ‘&,j.k) “ ‘;,j,k) (25)
n=l

where

~e(i,j, k) = (.d&@{,j, k)

iV is the number of time steps in each period of time and T
is the number of the period.

To control the convergence of the iterations, the following
relative least square error test is used [3]

/

z (P:av(i,j,k)- ‘&[i,j,k))2
Rerror = (t,j,k)df

z

< tol

P:av(i,j,k)

(,,j,k)df

(26)

where Al is a set of points that are in the dielectric material and
tol is a given tolerant parameter and P&,(, ~j,~) and p~~~i,j,~)

denote the power density at a point (i, j, k) m the two different
periods, respectively.

V. FIESULTSAND DISCUSSION

The results presented in this section were computed using a
Dec ALPHA workstation and the power density distributions
are displayed, in normalized form. In order to assess the
performance and validate the MAXMOL-E scheme, five tests
have been performed for two different configurations. The first
configuration tested concerns the microwave irradiation of a
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Fig. 8, Comparison of the power density distribution of FDTD and MAX-
MOL-Emethodsfor the cavity in Test 4; the dielctric material M located at
the bottom of the cavity with ZO = O.0 cm.

dielectric material loaded at different locations within a rectan-

gular waveguide. For this case standard analytic solutions are
available and the results of MAXMOL-E can be easily verified.
Further, in order to demonstrate the accuracy of the method
of characteristics approximation for the absorbing boundary
condition a simple example is analyzed. Once the results

of MAXMOL-E were in good agreement with the analytical
solutions it was decided for the second configuration to test the

more complicated case of a dielectric material loaded within
a multimode cavity. Since in this case it was not possible

to derive analytical solutions, the results of MAXMOL-E
were compared with the results previously published for the
same case using the FD–TD method [3]. The effects on the
power density distribution of moving the material to different
locations within the cavity or using multiple input waveguides
are also analyzed.

For all cases studied the dielectric material properties are
assumed piece-wise constant. The input plane is excited at
the microwave frequency of 2.45 GHz, and the TEIO mode
is the dominant mode inside the waveguide. Table I gives the

mesh dimensions and the CPU time taken for the first three test
cases. The time step size was chosen as 6t= 2.04 ps so that the
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Fig. 9. Comparison of the power density distribution of FDTD and MAX-
MOL-E methods for the cavity in Test 4, the dielectric material is located at
ZO = 4.587 cm from the bottom of the cavity.

stability criteria given in (9) and (10) are satisfied. Equation
(26) is used for determining the converge criterion of both
MAXMOL schemes, where a value of tol = 0.00005 implies
that the computation will terminate somewhere between 10
and 15 periods of processing.

The first configuration tested is a rectangular waveguide

filled with a 10SSYmaterial and terminated by a short circuit,

shown in Fig. 2. The waveguide dimension is a = 10 cm,

b = 5 cm. The parameters ZI, 24, and 23 are specified for each
test case.

1) Test l—Accuracy of the Absorbing Boundary Condition:

This test problem is a special case of that exhibited in Fig. 2,
where here the accuracy of the absorbing boundary condition
is analyzed. In this case there is no material loaded in the
waveguide and at one end of the waveguide the input plane
is located, while at the other end, at 23 = 2Ag = 30.97

cm there is only an absorbing boundary condition instead
short-circuit. Since this is such a simple model, with the
microwaves launched from the input plane and vanishing at the
absorbing boundary, there is no reflected wave existing inside
the waveguide. As was stated above, the absorbing boundary
condition can be approximated by two different methods, and
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the results of these approximations are given in Fig. 3. In the
past, the absorbing boundary condition has been employed in
the FDTD method [7], [3], [4], where it was approximated by

finite differences and linear interpolation. The results appear

that the method of characteristics (MoC) almost identical with

the analytical solution and are far better than those obtained for

the Taylor series approximation. Furthermore, the use of the
MoC can offer a reduction in the overall processing time (see
Table I), as opposed to the Taylor method. As a consequence of
these findings the MoC is implemented in all of the following
tests.

2) Test 2—Lossy Material Loaded Adjacent to the Short

Circuit Boundary: This case is equivalent to the problem
tested by Jia and Jolly [1992] where the dielectric property
of the lossy material was assumed constant at e. = 2.0 – 0.5j
and Z1 = 10 cm and .Z2 = ,Z3 = 20 cm. The results given
by the analytical solution, the FDTD scheme, MAXMOL-
H (the model implemented here for MAXMOL-H uses the
same techniques for discretization and boundary conditions
discussed in this paper and is therefore a slight variation of

1

0.9

\

0.3

0.2

0.?

0
0

30

A

(ii)
(11)

the model presented in [10] and [11] MAXMOL-E are shown
in Fig. 4. Through the comparison of those four solutions, it
is possible to observe that they are all in good agreement,

with the numerical models predicting the same shape and

magnitude of the analytical solution. From Table 1, however,
it is clear that the MAXMOL-E is approximately twice as

fast as MAXMOL-H. The increased execution time of the
MAXMOL-H scheme can be explained by the following facts:
for the waveguide problem, both the (HZ and Hz ) distributions
must be computed and then the resulting magnetic field has
to be converted to the electric field in order to calculat~ the
power density distribution. For the MAXMOL-E scheme only,
however, (13v) is computed and the power distribution can be
deduced directly.

3) Test 3—L.Ossy Material Loaded at the Center oj” the

Waveguide: For this case the lossy slab is located at the centre
of the waveguide applicator with ,zI = 10 cm, 22 = 20 cm,, and
.Z3= 30 cm. The dielectric property of the material is a~gain
assumed constant at E. = 2.0 – 0.5j. The results given by the
analytical solution and MAXMOL-E are shown in Fig. ,5. In
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this case, the solution of the power density distribution given
by the MAXMOL-E scheme exhibits a remarkable match
with the analytical solution. Furthermore, it can be seen from
Table I that MAXMOL-E is approximately twice as fast as

MAXMOL-H.

At this point the MAXMOL-E scheme has been tested

against some standard analytical solutions and has shown good
agreement. Having validated satisfactorily the MAXMOL-E
numerical method, it is now possible to continue to test this

scheme with good confidence for the second configuration
which concerns the more complicated multimode cavity case.
This example represents a good challenge for the numerical
model and in order to verify the accuracy of MAXMOL-E the
obtained predictions will be validated against those previously
computed by the FDTD scheme.

4) Test 4—LOSSY Material Loaded Within a Multimode Cav-

ity: This test problem represents the medium-sized cavity
shown in Fig. 6, where A = 17.2 (cm), 1? = 17.2 (cm),
C = 14.907 (cm), a = 9.173 (cm), b = 4.586 (cm), and
c = 11.466 (cm). The space increments are 3015xx 306y X266z

in the cavity and 166x x 86y x 206,z in the waveguide. The
input plane is located at a position 108.z from the absorbing
boundary, and the waveguide is located at X. = 76x and

go = 116Y. The dielectric material is loaded in the X-Y
plane with a thickness of dz = 36z, at two different locations

Z. = 0.0 cm and Z. = 4.587 (cm). The relative permittivity

is S, = 2.0 – o.5j.

For this case an analysis of the convergence of the
MAXMOL-E scheme using (26) is shown in Fig. 7. It can be
seen that after ten periods have transpired, the solution of the
average power density distribution has reached the sinusoidal
steaded state solution.

From Figs. 8 and 9, it is clear that the simulation results
obtained by the MAXMOL-E scheme resemble the results
obtained from the FDTD scheme, with the shape of the

solution being similar. Furthermore, it is noticable that the

biggest difference occurs in the center of the material in Fig. 9,
however the overall trends of both solutions and qualitatively

equivalent.
Finally, in order to demonstrate the versatility of the de-

veloped MAXMOL-E model, the power density distribution
generated inside a dielectric material loaded in a multimode
cavity, which is fed by multiple input waveguides, is studied.
The chosen examples exhibit the complicated electromagnetic

phenomena that arise inside the cavity and provides some
insight of the effect of multiple waveguide input on the power
density distribution. With the knowledge obtained from such
studies, it may be possible to numerically optimize the cavity
design in order to achieve a uniform heating phenomenon to
arise within the material loaded within the cavity. This idea
forms the basis of future research.

5) Test 5—The Injieuence of Multiple Waveguide Input: In
this test problem, the situation is the same as that outlined
for Test 4, however, instead of a single waveguide input
there are two input power waveguides. For case 1), the two
waveguides are located in the center of the top of the cavity
at xl = 76x, yl = 56y, X2 = 76x and y2 = 176y. For case 2),

the two waveguides are located at staggered positions close

to the sides of the top of the cavity at XI = 26z, yl =

26y, $2 = 126x and y2 = 206y. The dielectric material is

located at Z. = 218.z. The aim of this test is to exhibit how

the power density distribution is affected by a number of power

input waveguides, and how the electromagnetic fields evolve

and interact inside the lossy material for such systems. The

results shown in Fig. 10 indicate that as the number of input

waveguides into the cavity is increased from one to two, the
shape and form of the power density changes substantially and

becomes more complicated. The number of peaks present in
the power density distribution increases from one to two and
the locations of these peaks corresponds with, as expected, the
location of the input guides. Furthermore, when the locations

of these input waveguides are adjusted, there is a noticable

effect on the power density distribution.

VI. CONCLUSION

In this paper it has been shown how the MoL technique
can be used to simulate the hyperbolic Maxwell’s wave equa-
tions. By comparison of the MAXMOL-H and MAXMOL-
E schemes against analytical solutions for the rectangular

waveguide, it is clear that the technique is accurate and

that the MAXMOL-E scheme is much more convenient and

computationally faster than the MAXMOL-H scheme. The

reasons for the advantages of using MAXMOL-E are due to

the facts that there is only one component (13Vfor TEIO mode)

which has to be computed inside the waveguide and the power
density distribution generated in the dielectic material can be
directly calculated from this component. However, for the
MAXMOL-H scheme, there are two fields components (~.
and H. for TEIO mode) which have to computed inside the
waveguide, and the solution of the H field must be transformed

into the E field before the power density distribution can be

deduced.
The details of the MAXMOL-E method have been presented

in this paper and used to analyze the electric field and power

distributions in a microwave, dielectrically loaded rectangular
cavity with both single- and double-input power waveguides.
The algorithm has been tested against the FDTD method for
the case of a simply loaded cavity where good agreement
between the two methods has been noted.

In summary it was found that the MAXMOL-E method is

straightforward to implement and provides a simple path for
accommodating within the code such factors as multipower
input and multilayered dielectric loads. The results of the

two input power waveguide tests exhibited in this paper are
included as a thought provoking exercise for future research
that will focus on the optimization of the cavity design. This
optimization seeks to achieve a uniform heating phenomenon
to arise within the loaded material. The MAXMOL-E method
provides all the necessary ingredients for such a study, since
it can easily be utilized to investigate the effects of varying
important parameters that include the dimension and shape of
the cavity, the number and location of the excitation ports,

and the dimension, shape, and position of the material within
the cavity.
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APPENDIX

Approximation for a cross direvative term at an interface
between two dielectric materials
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